BACKGROUND AND AIMS: Vascular calcification (VC) significantly increases the incidence and mortality of many diseases. The causal relationships of dyslipidaemia and lipid-lowering drug use with VC severity remain unclear. This study explores the genetic causal associations of different circulating lipids and lipid-lowering drug targets with coronary artery calcification (CAC) and abdominal aortic artery calcification (AAC). METHODS: We obtained single-nucleotide polymorphisms (SNPs) and expression quantitative trait loci (eQTLs) associated with seven circulating lipids and 13 lipid-lowering drug targets from publicly available genome-wide association studies and eQTL databases. Causal associations were investigated by univariable, multivariable, drug-target, and summary data-based Mendelian randomization (MR) analyses. Potential mediation effects of metabolic risk factors were evaluated. RESULTS: MR analysis revealed that genetic proxies for low-density lipoprotein cholesterol (LDL-C), triglycerides (TC) and Lipoprotein (a) (Lp(a)) were causally associated with CAC severity, and apolipoprotein B (apoB) level was causally associated with AAC severity. A significant association was detected between hepatic Lipoprotein(A) (LPA) gene expression and CAC severity. Colocalisation analysis supported the hypothesis that the association between LPA expression and CAC quantity is driven by different causal variant sites within the ±1 Mb flanking region of LPA. Serum calcium and phosphorus had causal associations with CAC severity. CONCLUSIONS: Inhibitors targeting LPA might represent CAC drug candidates. Moreover, T2DM, hypercalcemia, and hyperphosphatemia are positively causally associated with CAC severity, while chronic kidney disease and estimated glomerular filtration rate are not.