Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that pose significant risks to human health and ecosystems owing to their widespread use and resistance to degradation. This study examines the potential of microbial consortia as a sustainable and effective strategy for biodegrading PFAS. It highlights how these complex communities interact with various PFAS, including perfluorocarboxylic acids, perfluorosulfonic acids, fluorotelomer alcohols, and fluorotelomer-based precursors. Despite the potential of microbial consortia, several challenges impede their application in PFAS remediation, including effective microbial species identification, inherent toxicity of PFAS compounds, co-contaminants, complications from biofilm formation, diversity of environmental matrices, and competition with native microbial populations. Future research should focus on refining characterization techniques to enhance our understanding of microbial interactions and functions within consortia. Integrating bioinformatics and system biology will enable a comprehensive understanding of microbial dynamics and facilitate the design of tailored consortia for specific PFAS compounds. Furthermore, field applications and pilot studies are essential for assessing the real-world effectiveness of microbial remediation strategies. Ultimately, advancing our understanding and methodologies will lead to efficient biodegradation processes and positioning microbial consortia as viable solutions for PFAS-contaminated environments.