Efficacy of black soldier fly larvae in converting kitchen waste and the dynamic alterations of their gut microbiome.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhenhui Cao, Shiyu Chen, Qingquan Hu, Qiuye Lin, Chen Liu, Shengwen Wang, Le Xu, Rencan Yang, Zhiyong Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Journal of environmental management , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 552148

 The escalating demand for food, driven by population growth and improved living standards, has prompted the development of efficient and eco-friendly kitchen waste (KW) treatment technologies. This study focused on the feasibility of utilizing KW through the application of black soldier fly larvae (BSFL), with a specific interest in the dynamic changes in the intestinal bacterial community during the treatment process. After a 10-day KW processing period, BSFL gained an average of 0.84 g/hundred worms/day, achieving a conversion efficiency of 18.52% for KW. This demonstrated their capacity to efficiently utilize KW nutrients for good growth performance. Additionally, the bioconversion of KW by BSFL could markedly decrease the presence of potentially pathogenic bacteria in the feed matrix within one day (P <
  0.001), including Escherichia coli, Shigella spp., Salmonella spp., and Staphylococcus aureus. Notably, the diversity of the intestinal bacterial community in BSFL increased with age and sustained KW consumption (P <
  0.05), accompanied by enhanced stability. In particular, the average relative abundance of potential probiotic genera associated with nutrient absorption and antimicrobial compounds synthesis, including Fusobacterium, Phascolarctobacterium, Enterococcus, and Actinomyces, increased. Conversely, the prevalence of pathogenic genera like Morganella and Escherichia-Shigella, decreased. Co-occurrence network analysis identified Lactobacillus, Brevibacterium, Erythrobacter, and Enterobacteriaceae as keystone species. Despite their low abundance in the BSFL intestine, these species were potentially crucial for KW bioconversion. Our findings underscore the potential of BSFL for sustainable KW conversion, providing strong support for effective waste management strategies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH