Exploring a universal model for predicting blueberry soluble solids content based on hyperspectral imaging and transfer learning to address spatial heterogeneity challenge.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Baichao Chen, Guoliang Chen, Jingyuan Dai, Dayang Liu, Guozheng Wang, Mianqing Yang, Saiwei Yu

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 552172

Accurate assessment of soluble solid content (SSC) in blueberries is crucial for quality evaluation. However, in real production lines, blueberries are usually in random placement and the biological heterogeneity of blueberry parts can lead to spectral distortion, which affects the accuracy of SSC prediction models in various placement situations. Therefore, it is crucial to investigate an appropriate modeling method to minimize these negative effects. In this paper, we propose an approach that combines hyperspectral imaging (HSI) technique, residual multilayer perceptron, and transfer learning to build a universal model capable of detecting blueberry SSC in various placement situations. The study acquired SSC values of 1150 blueberry samples and hyperspectral data at different surfaces (stem end, calyx end, and two parts of the equatorial plane), used a residual multilayer perceptron to build a local model, and fine-tuned the model by transfer learning to improve its generalization ability. The results show that the optimized model has significantly improved prediction accuracy on different surfaces, especially the model based on equatorial surface data (enhanced-equator-1) performs well. In the external validation set, the model achieved correlation coefficients of prediction (r
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH