Recent advances in bioanalytical and imaging technologies have revolutionized our ability to assess complex biological and pathological changes within tissue samples. Spatial omics, a rapidly evolving technology, enables the simultaneous detection of multiple biomolecules in tissue sections, allowing for high-dimensional molecular profiling within tissue microanatomical contexts. This offers a powerful opportunity for precise, multidimensional exploration of complex disease pathophysiology. The Pathology 2.0 working group within the European Society of Toxicologic Pathology (ESTP) includes a subgroup dedicated to spatial omics technologies. Their primary goal is to raise awareness about these emerging technologies and their potential applications in discovery and toxicologic pathology. This review provides an overview of commonly used, commercially available platforms for transcriptomic, proteomic, and multiomic analysis, discussing technical aspects and illustrative examples of their applications. To harness the power of spatial omics for translational drug discovery and human safety risk assessment, we emphasize the important role of pathologists at every stage of the workflow-from hypothesis generation to sample preparation, data analysis, and interpretation. Spatial omics technologies offer novel opportunities in target discovery, lead selection, preclinical assessment, and clinical development in compound development.