Dominant follicular development and atresia are governed by the proliferation of granulosa cells (GCs), a process influenced by the delicate balance between apoptosis and autophagy. Oxidative stress, a pivotal catalyst of GCs apoptosis, modulates gene expression through epigenetic mechanisms, including chromatin remodeling. Nevertheless, the regulatory mechanisms underpinning GCs functionality in relation to prolificacy remain inadequately elucidated. In this study, we discovered that the chromatin accessibility of nuclear receptor subfamily 1 group D member 1 (NR1D1) was markedly enhanced in dominant follicular GCs from low-prolificacy sheep, as evidenced by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq), which correlated with elevated NR1D1 transcript levels. Remarkably, NR1D1 emerged as a novel regulator of follicular development, exhibiting heightened expression in dominant follicles. The overexpression of NR1D1 induced cell cycle arrest, autophagy activation, and mitochondrial dysfunction via the AMPK pathway, while its knockdown fostered GCs survival and functionality. Furthermore, NR1D1 inhibits the transcription of HSD17B12, thereby contributing to oxidative stress (ROS)-induced apoptosis, as demonstrated by CUT&Tag-qPCR and dual luciferase assays. The downregulation of HSD17B12 partially alleviated the effects of NR1D1 knockdown on GCs functionality. These findings indicate that NR1D1 orchestrates GCs proliferation and apoptosis through the suppression of HSD17B12 and the activation of the AMPK pathway, establishing NR1D1 as a novel transcription factor implicated in follicular development and ovarian function, with significant implications for prolificacy.