Identifying genetic variants associated with bacterial phenotypes, such as virulence, host preference and antimicrobial resistance, has great potential for a better understanding of the mechanisms involved in these traits. The availability of large collections of bacterial genomes has made genome-wide association studies (GWAS) a common approach for this purpose. The need to employ multiple software tools for data pre- and postprocessing limits the application of these methods by experienced bioinformaticians. To address this issue, we have developed a pipeline to perform bacterial GWAS from a set of assemblies and annotations, with multiple phenotypes as targets. The associations are run using five sets of genetic variants: unitigs, gene presence/absence, rare variants (i.e. gene burden test), gene-cluster-specific