Acrylamide (ACR) has garnered significant attention due to its neurotoxic effects. Oxidative stress, a key mechanism underlying ACR-induced neurotoxicity, is well-documented. Methionine sulfoxide reductase A (MsrA) plays a pivotal role in protecting various types of cells, including neuronal cells, against the effects of oxidative stress. However, the role of MsrA in ACR-induced neurotoxicity remains poorly understood. This study explored the effects of MsrA on ACR-induced neurotoxicity. After administering ACR by gavage at doses of 20 mg/kg, 30 mg/kg, and 40 mg/kg for 21 days, rats exhibited motor impairment and structural damage in the cerebellum. Both in vivo and in vitro, ACR dose-dependently reduced MsrA level, accompanied by increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, c-Jun N-terminal kinase (JNK) phosphorylation, and mitochondria-dependent neuronal apoptosis. To further ascertain the role of MsrA in mitigating ACR-induced neuronal apoptosis, SH-SY5Y cell line overexpressing MsrA was constructed. Overexpression of MsrA attenuated the ACR-induced increases in ROS and MDA levels. Additionally, alterations in mitochondrial membrane potential (MMP), mitochondrial ultrastructure, JNK phosphorylation, and mitochondria-dependent apoptosis caused by ACR were reversed in the cells overexpressing MsrA. These findings offer significant insights into the protective role of MsrA against ACR-induced neurotoxicity.