PURPOSE: This goal of this study was to determine the impact of vascular motion on acute drug transfer and retention of drug-coated balloons (DCB) or drug-eluting stents (DES). METHODS: Commercially available paclitaxel DCBs (Lutonix & IN.PACT) and a paclitaxel DES (Zilver) were subjected to physiological flow and vascular motion conditions using a peripheral-simulating benchtop bioreactor system. Each DCB- or DES-treated artery was subjected to three sets of movement parameters including pulsatile flow with no twisting/bending (P1), pulsatile flow with 16.8° twist, 25° bend and 3.2 mm compression (P2), and pulsatile flow with 68° twist, 35° bend, 21 mm compression (P3). After 24 h, the treated segments were removed and paclitaxel concentrations were measured using pharmacokinetic analysis. RESULTS: In the group of arteries treated with the Lutonix DCB, there was a significant decrease in arterial paclitaxel concentrations between the P1 and both the P2 and P3 moving parameters (P1 = 404 ± 195 ng/mg, P2 = 14.9 ± 9.92 ng/mg, P3 = 19.2 ± 15.4 ng/mg
P1-P2 p = 0.007, P1-P3 p = 0.005). For the IN.PACT DCB group, no differences in the mean arterial paclitaxel concentrations were observed for the various movements (p = 0.55). Lastly, in the Zilver DES group, differences were only measured between the P2 and P3 moving parameters (P2 = 84.8 ± 32.7 ng/mg, P3 = 0.11 ± 0.06 ng/mg
P2-P3 p = 0.01). CONCLUSION: Acute retention of arterial paclitaxel levels can be adversely impacted by vascular movement in both DES- and DCB- treated arteries.