Tìm kiếm k-motifs xấp xỉ trong chuỗi dữ liệu chuỗi thời gian bằng r*-tree

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: vie

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: Khoa học và Công nghệ các trường đại học kỹ thuật, 2013

Mô tả vật lý: 133-139

Bộ sưu tập: Metadata

ID: 560528

Time series motifs are frequently occu"ing but previously unknown subsequences of a longer time series. This motif concept is generalized to k-motifs problem, where the top K-Motifs are returned. Discovering time series motifs is a crucial task in time series data mining. Among a dozen algorithms that have been proposed for discovering time series motifs, the most popular algorithm is random projection. However, it still has some drawbacks. In this paper, the authors propose a novel approach for discovering K-Motifs in a long time series with the support of a multidimensional index structure, R*-tree and the idea of early abandoning. The method is disk efficient because it only requires a single scan over the entire time series. the authors demonstrate the effectiveness of the approach by experimenting on real datasets from different areas. The experimental results showed that the proposed algorithm outperforms the most popular method, random projection, in efficiency.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH