Predicting the Electron Density of Charged Systems Using Machine Learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sunil Gupta, Sherif Abdulkader Tawfik, Svetha Venkatesh

Ngôn ngữ: eng

Ký hiệu phân loại: 968.91 *Zimbabwe

Thông tin xuất bản: United States : The journal of physical chemistry. A , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 56408

The prediction of the electron density in molecules and crystals is a key pillar in the first-principles computation of their properties. Using machine learning to predict the electron density by using the atomic structure alone can save the computational cost of performing first-principles computations. While various machine learning approaches have been introduced for predicting the electron density, none of them predict the electron density for charged systems. This work extends a recent machine learning charge density model, DeepDFT, by including the charge of the structure as an input parameter into the model. We establish an input charge representation approach that successfully predicts the charged electron densities for several test cases, including charged defective perovskites, LiCoO
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH