Coma and disorders of consciousness (DoC) are clinical syndromes primarily resulting from severe acute brain injury, with uncertain recovery trajectories that often necessitate prolonged supportive care. This imposes significant socioeconomic burdens on patients, caregivers, and society. Predicting recovery in comatose patients is a critical aspect of neurocritical care, and while current prognostication heavily relies on clinical assessments, such as pupillary responses and motor movements, which are far from precise, contemporary prognostication has integrated more advanced technologies like neuroimaging and electroencephalogram (EEG). Nonetheless, neurologic prognostication remains fraught with uncertainty and significant inaccuracies and is impacted by several forms of prognostication biases, including self-fulfilling prophecy bias, affective forecasting, and clinician treatment biases, among others. However, neurologic prognostication in patients with disorders of consciousness impacts life-altering decisions including continuation of treatment interventions vs withdrawal of life-sustaining therapies (WLST), which have a direct influence on survival and recovery after severe acute brain injury. In recent years, advancements in neuro-monitoring technologies, artificial intelligence (AI), and machine learning (ML) have transformed the field of prognostication. These technologies have the potential to process vast amounts of clinical data and identify reliable prognostic markers, enhancing prediction accuracy in conditions such as cardiac arrest, intracerebral hemorrhage, and traumatic brain injury (TBI). For example, AI/ML modeling has led to the identification of new states of consciousness such as covert consciousness and cognitive motor dissociation, which may have important prognostic significance after severe brain injury. This chapter reviews the evolving landscape of neurologic prognostication in coma and DoC, highlights current pitfalls and biases, and summarizes the integration of clinical examination, neuroimaging, biomarkers, and neurophysiologic tools for prognostication in specific disease states. We will further discuss the future of neurologic prognostication, focusing on the integration of AI and ML techniques to deliver more individualized and accurate prognostication, ultimately improving patient outcomes and decision-making process in neurocritical care.