Toosendanin Induces Cell Cycle Arrest and Apoptosis to Suppress Diffuse Large B-Cell Lymphoma Growth by Inhibiting PI3Kα/β and PLK1 Signaling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Meng Chen, Qian Hu, Ting Niu, Jinjin Wang, Mengyao Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 571.849 +Cell growth

Thông tin xuất bản: England : Phytotherapy research : PTR , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 56791

Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous subtype of non-Hodgkin lymphoma, with two-thirds of patients relapsing or resisting existing therapies, highlighting the urgent need for effective treatments. Toosendanin (TSN), a triterpenoid from Meliae Cortex, exhibits significant anti-cancer activity by modulating cell survival and proliferation. This study investigates the anti-lymphoma effects and underlying mechanisms of TSN, proposing it as a potential therapeutic agent to address the challenges of DLBCL. Network pharmacology, molecular docking, and transcriptome sequencing were employed to predict TSN's anti-DLBCL potential. Findings were validated through in vitro and in vivo experiments, including cell viability assays, flow cytometry, quantitative PCR, Western blotting, reverse experiments with small-molecule inhibitors or genetic editing, and a cell-derived xenograft (CDX) model. Bioinformatics analyses revealed TSN's strong binding affinity to PI3Kα/β and Polo-like kinase 1 (PLK1). Experiments showed that TSN downregulated the PI3K/Akt signaling pathway and reduced PLK1 mRNA and protein levels, inducing apoptosis, cell cycle arrest, and cell death in DLBCL cells. RNA sequencing and metabolic assays indicated TSN upregulated cholesterol biosynthesis in DLBCL cells. Co-treatment with a statin enhanced TSN's anti-DLBCL effects while mitigating hepatic and pulmonary toxicity. This study identifies TSN as a dual inhibitor of PI3K and PLK1 with significant therapeutic potential for DLBCL. It also proposes a lipid-modulating strategy to enhance TSN's cytotoxicity while reducing adverse effects, offering a promising approach to improve DLBCL treatment outcomes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH