Astringency is crucial in determining the taste quality of matcha, primarily influenced by flavonoids. However, the specific impact of cultivars and processing techniques on flavonoid composition remains unclear. This study employs quantitative descriptive analysis, multivariate statistical analysis, dose over threshold (Dot) values, and sensory verification to comprehensively analyze changes in flavonoid profiles during the processing of two cultivars (Longjing 43 and Zhongcha 108) and their effects on matcha's astringency. 679 flavonoid metabolites were identified, predominantly comprising flavones and flavonols. Longjing 43 fresh leaves predominantly contain glycosylated flavonoids, whereas Zhongcha 108 has a higher proportion of O-methylated modifications. Drying is a critical process, significantly boosting flavonoid glycoside content. Cultivar emerges as the primary and most influential factor determining matcha astringency, with processing techniques exerting a lesser impact. Furthermore, by utilizing Dot values and sensory verification, it was determined that quercetin-3-O-glucoside, kaempferol-3-O-rutinoside, (-)-epigallocatechin gallate, and kaempferol-3-O-glucoside are pivotal components of matcha's astringency.