Large language models (LLMs) have significantly impacted various domains of our society, including recent applications in complex fields such as biology and chemistry. These models, built on sophisticated neural network architectures and trained on extensive datasets, are powerful tools for designing, optimizing, and generating molecules. This review explores the role of LLMs in discovering and designing antibiotics, focusing on peptide molecules. We highlight advancements in drug design and outline the challenges of applying LLMs in these areas.