Isocitrate dehydrogenase (IDH) is a pivotal enzyme responsible for catalyzing the oxidative decarboxylation of isocitrate into α-ketoglutarate (α-KG). This enzyme serves as a crucial regulator in the tricarboxylic acid cycle (TCA cycle), acting as a rate-limiting step. Its role extends beyond mere metabolic function, influencing cellular homeostasis and overall cell function. In the past decade, prominent research in cancer genetics has revealed that genes responsible for encoding isocitrate dehydrogenase are commonly mutated across various human malignancies. Significant research in the field has shown that these mutations are commonly found in diseases like glioma, acute myeloid leukemia (AML), cholangiocarcinoma (CCA), chondrosarcoma, and thyroid cancer (TC). As research on IDH progresses, deeper insights into the biological effects of IDH mutations have been gained, unveiling their potential role in tumorigenesis. In addition, IDH mutants' unique activities creates new pathways in tumor metabolism, gene rearrangement, and therapeutic resistance. Currently, innovative molecular targeting strategies for genes bearing mutations in IDH have been devised to enhance the therapeutic efficacy against cancers harboring IDH mutations. These methods represent a promising avenue for improving treatment outcomes in IDH-mutated malignancies. This article mainly summarizes the related research on glioma caused by IDH mutation, and focuses on the biological characteristics and transformation of IDH.