A deep-learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lanqing Cheng, Zhiguo Jiang, Xue Kong, Jun Shi, Dongdong Sun, Wei Wang, Can Wu, Haibo Wu, Yushan Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 363.232 Patrol and surveillance

Thông tin xuất bản: England : The Journal of pathology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 57426

 Over 90% of gastrointestinal stromal tumors (GISTs) harbor mutations in KIT or PDGFRA that can predict response to tyrosine kinase inhibitor (TKI) therapies, as recommended by NCCN (National Comprehensive Cancer Network) guidelines. However, gene sequencing for mutation testing is expensive and time-consuming and is susceptible to a variety of preanalytical factors. To overcome the challenges associated with genetic screening by sequencing, in the current study we developed an artificial intelligence-based deep-learning (DL) model that uses convolutional neural networks (CNN) to analyze digitized hematoxylin and eosin staining in tumor histological sections to predict potential response to imatinib or avapritinib treatment in GIST patients. Assessment with an independent testing set showed that our DL  model could predict imatinib sensitivity with an area under the curve (AUC) of 0.902 in case-wise analysis and 0.807 in slide-wise analysis. Case-level AUCs for predicting imatinib-dose-adjustment cases, avapritinib-sensitive cases, and wildtype GISTs were 0.920, 0.958, and 0.776, respectively, while slide-level AUCs for these respective groups were 0.714, 0.922, and 0.886, respectively. Our model showed comparable or better prediction of actual response to TKI than sequencing-based screening (accuracy 0.9286 versus 0.8929
  DL model versus sequencing), while predictions of nonresponse to imatinib/avapritinib showed markedly higher accuracy than sequencing (0.7143 versus 0.4286). These results demonstrate the potential of a DL model to improve predictions of treatment response to TKI therapy from histology in GIST patients. © 2025 The Pathological Society of Great Britain and Ireland.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH