Supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) has recently been utilized to enhance the oral absorption of poorly water-soluble drugs. S-SMEDDS forms drug-incorporated microemulsions (MEs) during aqueous dispersion with the formation of drug supersaturation in the bulk water phase. However, the liquid-liquid phase separation (LLPS) behavior of the supersaturated drugs within MEs has not been well studied. This study investigated the impact of S-SMEDDS components on the LLPS of the supersaturated drug and the achievable supersaturation level of the drug in MEs. Fenofibrate (FFB)-loaded S-SMEDDS formulations composed of different oils, Labrafil M 1944 CS (M1944) and Labrafac PG (PG), were prepared and dispersed into water to form MEs (M1944 ME and PG ME). Cryo-TEM measurements revealed the coexistence of swelling micelles and nanosized FFB-rich droplets in highly FFB-loaded MEs, indicating that FFB underwent LLPS even in the MEs. The FFB-rich droplet size was significantly reduced in PG ME. NMR-based quantification of the solubilized FFB in swelling micelles and phase-separated FFB revealed that apparent amorphous solubility of FFB increased with increasing M1944 components in MEs, while that was almost constant regardless of PG contents. On the other hand, PG was largely partitioned into the FFB-rich phase, resulting in the reduction of the chemical potential of FFB in the FFB-rich phase and the maximum free FFB concentration in the bulk water phase. The mixing of PG with the FFB-rich phase would work to maintain the FFB-rich droplet as a smaller size. Meanwhile, M1944 was minimally distributed to the FFB-rich phase, keeping the maximum supersaturation level of FFB. This study highlights that the impact of S-SMEDDS oil components on the physicochemical properties of the drug-rich phase formed via LLPS and achievable drug supersaturation should be considered when designing S-SMEDDS formulations to enhance drug absorption.