Experimental evolution in maize with replicated divergent selection identifies two plant-height-associated regions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Timothy Beissinger, Dietrich Kaufmann, Ginnie Morrison, Mila Tost, Cathy Westhues

Ngôn ngữ: eng

Ký hiệu phân loại: 398.322 Physiographic regions

Thông tin xuất bản: United States : Genetics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 57817

Experimental evolution studies are common in agricultural research, where they are often deemed "long-term selection." These are often used to perform selection mapping, which involves identifying markers that were putatively under selection based on finding signals of selection left in the genome. A challenge of previous selection mapping studies, especially in agricultural research, has been the specification of robust significance thresholds. This is in large part because long-term selection studies in crops have rarely included replication. Usually, significance thresholds in long-term selection experiments are based on outliers from an empirical distribution. This approach is prone to missing true positives or including false positives. Under laboratory conditions with model species, replicated selection has been shown to be a powerful tool, especially for the specification of significance thresholds. Another challenge is that commonly used single-marker-based statistics may identify neutral linked loci which have hitchhiked along with regions that are actually under selection. In this study, we conducted divergent, replicated selection for short and tall plant height in a random-mating maize population under real field conditions. Selection of the 5% tallest and shortest plants was conducted for 3 generations. Significance thresholds were specified using the false discovery rate for selection (FDRfS) based on a window-based statistic applied to a statistic leveraging replicated selection (FSTSum). Overall, we found 2 significant regions putatively under selection. One region was located on chromosome 3 close to the plant-height genes Dwarf1 and iAA8. We applied a haplotype block analysis to further dissect the pattern of selection in significant regions of the genome. We observed patterns of strong selection in the subpopulations selected for short plant height on chromosome 3.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH