Understanding how diverse cell types come together to form a functioning brain relies on the ability to specifically target these cells. This is often done using genetic tools such as the GAL4/UAS system in Drosophila melanogaster. Surprisingly, despite its extensive usage during studies of the aging brain, detailed spatiotemporal characterization of GAL4 driver lines in adult flies has been lacking. Here, we show that 3 commonly used neuronal drivers (elav[C155]-GAL4, nSyb[R57C10]-GAL4, and ChAT-GAL4) and the commonly used glial driver repo-GAL4 all show rapid and pronounced decreases in activity over the first 1.5 weeks of adult life, with activity becoming undetectable in some regions after 30 days (at 18°C). In addition to an overall decrease in GAL4 activity over time, we found notable differences in spatial patterns, mostly occurring soon after eclosion. Although all lines showed these changes, the nSyb-GAL4 line exhibited the most consistent and stable expression patterns over aging. Our findings suggest that gene transcription of key loci decreases in the aged brain, a finding broadly similar to previous work in mammalian brains. Our results also raise questions over past work on long-term expression of disease models in the brain and stress the need to find better genetic tools for ageing studies.