A semidominant point mutation of Mediator tail subunit MED5b in Arabidopsis leads to altered enrichment of H3K27me3 and reduced expression of targets of MYC2.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Clint Chapple, Jiaxin Long, Zhi-Wei Luo, Joe Ogas, Pete E Pascuzzi, Shelby Sliger

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : G3 (Bethesda, Md.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 57976

 The Mediator complex coordinates regulatory input for transcription driven by RNA polymerase II in eukaryotes. reduced epidermal fluorescence4-3 (ref4-3) is a semidominant mutation that results in a single amino acid substitution in the Mediator tail subunit Med5b. Previous characterization of ref4-3 revealed altered expression of a variety of loci in Arabidopsis, including those contributing to phenylpropanoid biosynthesis. Examination of existing RNA-seq data indicated that loci enriched for the transcriptionally repressive chromatin modification H3K27me3 are overrepresented among genes that are misregulated in ref4-3. We used ChIP-seq and RNA-seq to examine the possibility that perturbation of H3K27me3 homeostasis in ref4-3 plants contributed to altered transcript levels. We observed that ref4-3 results in a modest global reduction of H3K27me3 at enriched loci and that this reduction is not dependent on gene expression
  however, altered H3K27me3 was not strongly predictive of altered expression in ref4-3 plants. Instead, our analyses revealed a substantial enrichment of targets of the MYC2 transcriptional regulator among genes that exhibit decreased expression in ref4-3. Consistent with previous characterization of ref4-3, we observed that ref4-3-dependent decreased expression of MYC2 targets can be suppressed by loss of another Mediator tail subunit, MED25. This observation is consistent with previous biochemical characterization of MYC2. Our data highlight the diverse and distinct impacts that a single amino acid change in the tail subunit of Mediator can have on transcriptional circuits and raise the prospect that Mediator directly contributes to H3K27me3 homeostasis in plants.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH