Online test-time adaptation for better generalization of interatomic potentials to out-of-distribution data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Taoyong Cui, Xingao Gong, Yuqiang Li, Wanli Ouyang, Mao Su, Chenyu Tang, Shufei Zhang, Dongzhan Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 515.7242 Functional analysis

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 581455

Machine learning interatomic potentials (MLIPs) enable more efficient molecular dynamics (MD) simulations with ab initio accuracy, which have been used in various domains of physical science. However, distribution shift between training and test data causes deterioration of the test performance of MLIPs, and even leads to collapse of MD simulations. In this work, we propose an online Test-time Adaptation Interatomic Potential (TAIP) framework to improve the generalization on test data. Specifically, we design a dual-level self-supervised learning approach that leverages global structure and atomic local environment information to align the model with the test data. Extensive experiments demonstrate TAIP's capability to bridge the domain gap between training and test dataset without additional data. TAIP enhances the test performance on various benchmarks, from small molecule datasets to complex periodic molecular systems with various types of elements. TAIP also enables stable MD simulations where the corresponding baseline models collapse.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH