A deep learning digital biomarker to detect hypertension and stratify cardiovascular risk from the electrocardiogram.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mostafa A Al-Alusi, Patrick T Ellinor, Samuel F Friedman, Jennifer E Ho, Shinwan Kany, Shaan Khurshid, Mahnaz Maddah, Daniel Pipilas, James P Pirruccello, Joel T Rämö, Christopher Reeder, Pulkit Singh

Ngôn ngữ: eng

Ký hiệu phân loại: 636.0888 Animal husbandry

Thông tin xuất bản: England : NPJ digital medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 581541

 Hypertension is a major risk factor for cardiovascular disease (CVD), yet blood pressure is measured intermittently and under suboptimal conditions. We developed a deep learning model to identify hypertension and stratify risk of CVD using 12-lead electrocardiogram waveforms. HTN-AI was trained to detect hypertension using 752,415 electrocardiograms from 103,405 adults at Massachusetts General Hospital. We externally validated HTN-AI and demonstrated associations between HTN-AI risk and incident CVD in 56,760 adults at Brigham and Women's Hospital. HTN-AI accurately discriminated hypertension (internal and external validation AUROC 0.803 and 0.771, respectively). In Fine-Gray regression analyses model-predicted probability of hypertension was associated with mortality (hazard ratio per standard deviation: 1.47 [1.36-1.60], p <
  0.001), HF (2.26 [1.90-2.69], p <
  0.001), MI (1.87 [1.69-2.07], p <
  0.001), stroke (1.30 [1.18-1.44], p <
  0.001), and aortic dissection or rupture (1.69 [1.22-2.35], p <
  0.001) after adjustment for demographics and risk factors. HTN-AI may facilitate diagnosis of hypertension and serve as a digital biomarker of hypertension-associated CVD.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH