Neural Network-Assisted End-to-End Design for Full Light Field Control of Meta-Optics.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hanbin Chi, Huigao Duan, Yueqiang Hu, Yuting Jiang, Shaozhen Lou, Xiangnian Ou, Cheng-Wei Qiu, Quan Wang, Qiong Xie, Dian Yu

Ngôn ngữ: eng

Ký hiệu phân loại: 920.71 Men

Thông tin xuất bản: Germany : Advanced materials (Deerfield Beach, Fla.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 58449

 Meta-optics, with unique light-matter interactions and extensive design space, underpins versatile and compact optical devices through flexible multi-parameter light field control. However, conventional designs struggle with the intricate interdependencies of nano-structural complex responses across wavelengths and polarizations at a system level, hindering high-performance full-light field control. Here, a neural network-assisted end-to-end design framework that facilitates global, gradient-based optimization of multifunctional meta-optics layouts for full light field control is proposed. Its superiority over separated design is showcased by utilizing the limited design space for multi-wavelength-polarization holography with enhanced performance (e.g., ≈6 × structural similarity index experimentally). By harnessing the dispersive full-parameter Jones matrix, orthogonal tri-polarization multi-wavelength-depth holography is further demonstrated, breaking conventional channel limitations. To highlight its versatility, non-orthogonal polarizations (>
 3) are showcased for arbitrary polarized-spectral multi-information processing applications in display, imaging, and computing. The comprehensive framework elevates light field control in meta-optics, delivering superior performance, enhanced functionality, and improved reliability, thereby paving the way for next-generation intelligent optical technologies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH