The covariance environment defines cellular niches for spatial inference.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: John Bashkin, Adrienne Boire, Ronan Chaligne, Mohamed Gatie, Anna-Katerina Hadjantonakis, Doron Haviv, Stevan Jovanovich, Tal Nawy, Dana Pe'er, Nathan Pereira, Ján Remšík, Catherine Snopkowski, Meril Takizawa

Ngôn ngữ: eng

Ký hiệu phân loại: 658.4095 Executive management

Thông tin xuất bản: United States : Nature biotechnology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 59187

A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH