Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhana Duren, Qiuyue Yuan

Ngôn ngữ: eng

Ký hiệu phân loại: 025.348 *Sound recordings and music scores

Thông tin xuất bản: United States : Nature biotechnology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 59198

Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH