3-Acetyldeoxynivalenol induces pyroptosis in leydig cells via METTL3-mediated N6-methyladenosine modification of NLRP3.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Wei Jiao, Chaoliang Shi, Xiaoxiang Wan, Yangyun Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 912.01 Philosophy and theory

Thông tin xuất bản: Netherlands : Ecotoxicology and environmental safety , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 59966

3-acetyldeoxynivalenol (3-ADON), an acetylated derivative of deoxynivalenol, is a prevalent contaminant found in food products contaminated with mycotoxins. While the toxicological effects of 3-ADON on human and animal health are well-documented, its specific impact on the reproductive system remains underexplored. In this study, we comprehensively examined the toxicological effects of 3-ADON on TM3 Leydig cells through both in vivo and in vitro experimental models. Our results demonstrate that 3-ADON exposure leads to substantial testicular damage in vivo and significantly reduces cell viability while increasing mortality in TM3 cells in vitro (P = 0.012). Mechanistic investigations further revealed that 3-ADON exposure triggers pyroptosis in TM3 cells, as evidenced by upregulation of NLRP3, activation of caspase-1, ASC, and GSDMD. Moreover, 3-ADON treatment resulted in a significant upregulation of METTL3 expression and increased global mRNA m6A modification levels. m6A sequencing and functional assays established that METTL3-mediated m6A modification of NLRP3 mRNA enhances its stability and expression. RNA immunoprecipitation (RIP) assays further demonstrated that IGF2BP1 selectively recognizes m6A-modified NLRP3 mRNA, contributing to its stabilization. Notably, IGF2BP1 was found to inhibit the recruitment of the BTG2/CCR4-NOT complex by competitively binding to PABPC1, thereby preventing the deadenylation of NLRP3 mRNA and maintaining its expression. Additionally, we identified that METTL3 also methylates and stabilizes c-MyB mRNA, which subsequently binds to the promoter region of NLRP3, thereby enhancing its transcription. Collectively, our findings reveal a novel mechanism by which 3-ADON exerts its reproductive toxicity, underscoring the pivotal role of METTL3-mediated m6A modifications in regulating Leydig cell dysfunction.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH