A transformer-based semi-autoregressive framework for high-speed and accurate de novo peptide sequencing.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dong An, Xinhua Dai, Xiang Fang, Jinze Huang, Bo Meng, Shuo Wang, Yaoguang Wei, Yang Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 653.15 Speed and accuracy

Thông tin xuất bản: England : Communications biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 60060

De novo peptide sequencing directly identifies peptides from mass spectrometry data, playing a critical role in discovering novel proteins and analyzing complex biological samples without reliance on existing databases. To address challenges in both speed and accuracy, a transformer-based model, TSARseqNovo, incorporates two key innovations: a Semi-Autoregressive decoder for parallel prediction of multiple amino acids and a Masking Refinement decoder for refining low-confidence predictions. These features significantly enhance sequencing efficiency and accuracy. Evaluations on the Nine-Species, Aggregated, and Glycoproteomic datasets, demonstrate that TSARseqNovo outperforms state-of-the-art models, including CasaNovo, NovoB, InstaNovo + , and π-HelixNovo. Specifically, TSARseqNovo achieves up to a 2-fold speed increase over CasaNovo and π-HelixNovo, and approximately 10-fold over NovoB and InstaNovo + , while also showing substantial improvements in peptide prediction precision, especially for long peptides. These advancements position TSARseqNovo as a powerful tool for accelerating high-throughput proteomics research and addressing increasingly complex biological questions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH