Improving musculoskeletal care with AI enhanced triage through data driven screening of referral letters.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Herman Kasper Glas, Rachel Knevel, Tjardo Daniël Maarseveen, Erik van den Akker, Josien Veris-van Dieren

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : NPJ digital medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 60075

 Musculoskeletal complaints account for 30% of GP consultations, with many referred to rheumatology clinics via letters. This study developed a Machine Learning (ML) pipeline to prioritize referrals by identifying rheumatoid arthritis (RA), osteoarthritis, fibromyalgia, and patients requiring long-term care. Using 8044 referral letters from 5728 patients across 12 clinics, we trained and validated ML models in two large centers and tested their generalizability in the remaining ten. The models were robust, with RA achieving an AUC-ROC of 0.78 (CI: 0.74-0.83), osteoarthritis 0.71 (CI: 0.67-0.74), fibromyalgia 0.81 (CI: 0.77-0.85), and chronic follow-up 0.63 (CI: 0.61-0.66). The RA-classifier outperformed manual referral systems, as it prioritised RA over non-RA cases (P <
  0.001), while the manual referral system could not differentiate between the two. The other classifiers showed similar prioritisation improvements, highlighting the potential to enhance care efficiency, reduce clinician workload, and facilitate earlier specialized care. Future work will focus on building clinical decision-support tools.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH