Analysis of Operant Self-administration Behaviors with Supervised Machine Learning: Protocol for Video Acquisition and Pose Estimation Analysis Using DeepLabCut and Simple Behavioral Analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Amy A Arguello, Aneesh S Bal, Victoria J Kaufman, Fidel Maureira, Leo F Pereira Sanabria, Christopher A Reeves, Luciano S Voutour

Ngôn ngữ: eng

Ký hiệu phân loại: 598.6 Galliformes and Columbiformes

Thông tin xuất bản: United States : eNeuro , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 60279

The use of supervised machine learning to approximate poses in video recordings allows for rapid and efficient analysis of complex behavioral profiles. Currently, there are limited protocols for automated analysis of operant self-administration behavior. We provide a methodology to (1) obtain videos of training sessions via Raspberry Pi microcomputers or GoPro cameras, (2) obtain pose estimation data using the supervised machine learning software packages DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA) with a local high-performance computer cluster, (3) compare standard Med-PC lever response versus quadrant time data generated from pose estimation regions of interest, and (4) generate predictive behavioral classifiers. Overall, we demonstrate proof of concept to use pose estimation outputs from DLC to both generate quadrant time results and obtain behavioral classifiers from SimBA during operant training phases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH