Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sreelakshmi C S, Vrinda Kini, Debasmita Mondal, Pooja Nag, Kapil Sadani, Nethaji Sundarabal

Ngôn ngữ: eng

Ký hiệu phân loại: 681.7676 Other scientific and technological instruments, machinery, equipment

Thông tin xuất bản: Germany : Environmental science and pollution research international , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 60573

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs. The co-existence of bacteria and CIP in such aqueous pools has promoted fluoroquinolone resistance in bacteria and should be minimized. The worldwide accepted standard detection methodologies for the detection of CIP are high-performance liquid chromatography and mass spectrometry, which are lab-based, require state-of-the-art equipment, and are expensive. Hence, it is difficult to integrate them for on-site monitoring. Further, the current remediation technologies like conventional sludge-treatment techniques fail to remove antibiotics such as CIP. Several point-of-use technologies for the detection of CIP are being investigated. These typically involve the development of electrochemical sensors where substrates, modifiers, biorecognition elements, and their chemistries are designed and optimized to enable robust, point-of-use detection of CIP. Similarly, remediation techniques like adsorption, membrane filtration, ion exchange, photocatalysis, ozonation, oxidation by Fenton's reagent, and bioremediation are explored, but their onsite use is limited. The use of these sensing and remediation technologies in tandem is possibly the only way the issues related to antimicrobial resistance may be effectively tackled. This article provides a focused critical review on the recent advances in the development of such technologies, laying out the prospects and perspectives of their synergistic use to curb the menace of AMR and preserve antibiotics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH