Nanoparticles (NPs)-mediated silencing of GSTP1 expression to reverse chemoresistance for effective breast cancer therapy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Huangming Hong, Qingjian Li, Tao Qin, Qian Shen, Xiaoding Xu, Ke Yang, Herui Yao, Yunfang Yu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of colloid and interface science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 60829

Chemotherapy remains the primary treatment modality for breast cancer (BCa) patients. However, chemoresistance commonly arises in clinical settings, contributing to poor prognosis. The development of chemoresistance is a dynamic and complex process involving the activation of oncogenes and inactivation of tumor suppressor genes. In this work, we utilized the RNA-sequencing (RNA-seq) technology to analyze the gene expression profiles of primary and recurrent tumor samples from BCa patients received the postoperative standard chemotherapy with doxorubicin (DOX), and identified glutathione S-transferase P1 (GSTP1) as a key factor in regulating chemoresistance. Molecular mechanistic studies revealed that high GSTP1 expression could not only impair the cytotoxicity of DOX by catalyzing the conjugation of reductive glutathione (GSH) with DOX, but also block the c-Jun NH2-terminal kinase (JNK) pathway to promote the proliferation via up-regulating anti-apoptotic B-cell lymphoma-2 (Bcl-2) expression. Given the severe side effects of DOX and the potential of RNA interference (RNAi) technology to silence target gene expression, we developed an endosomal pH-responsive nanoparticle (NP) platform for systemic co-delivery of DOX and GSTP1 siRNA (siGSTP1), and demonstrated its efficacy in reversing chemoresistance and suppressing the growth of DOX-resistant BCa tumors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH