MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiaxing Chen, Peng Gao, Yujian Lee, Shuaicheng Li, Ziyang Wang, Yongqi Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: England : Bioinformatics (Oxford, England) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 61040

MOTIVATION: The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models have emerged as a promising solution to expedite the annotation process. However, despite making significant progress in protein research, graph neural networks face challenges in capturing long-range structural correlations and identifying critical residues in protein graphs. Furthermore, existing models have limitations in effectively predicting the function of newly sequenced proteins that are not included in protein interaction networks. This highlights the need for novel approaches integrating protein structure and sequence data. RESULTS: We introduce Multi-scalE Graph Adaptive neural network (MEGA-GO), highlighting the capability of capturing diverse protein sequence length features from multiple scales. The unique graph adaptive neural network architecture of MEGA-GO enables a more nuanced extraction of graph structure features, effectively capturing intricate relationships within biological data. Experimental results demonstrate that MEGA-GO outperforms mainstream protein function prediction models in the accuracy of Gene Ontology term classification, yielding 33.4%, 68.9%, and 44.6% of area under the precision-recall curve on biological process, molecular function, and cellular component domains, respectively. The rest of the experimental results reveal that our model consistently surpasses the state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: The source code and data of MEGA-GO are available at https://github.com/Cheliosoops/MEGA-GO.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH