Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode. Due to the lithiophilic modification, the cycling reversibility of the host material is increased and the growth of Li dendrites and the generation of "dead Li" are inhibited. As a result, the resultant composite Li metal anode (ZnSn-CC@Li) manages to retain cycling stability for over 1000 h at a current density of 1 mA cm