The discovery of new transformations drives the development of synthetic organic chemistry. While the main goal of synthetic chemists is to obtain the maximum yield of a desired product with minimal side product formation, meticulous characterization of the latter offers an opportunity for discovering new reaction pathways, alternative mechanisms, and new products. Herein, we present a case study on the discovery and development of a new chemical transformation using online mass spectrometry. This highly sensitive method enabled the discovery of a new reaction pathway in a catalyst-free cross-dehydrogenative coupling of 1,2,3,4-tetrahydroisoquinoline with acetone via peroxide intermediate, ultimately yielding a tricyclic pyridinium compound. Mass spectrometry was instrumental in detecting and identifying the structure of the pyridinium compound, initially formed as a trace byproduct, which allowed us to develop a general methodology for its exclusive formation.