A multi-modal transformer for cell type-agnostic regulatory predictions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bradley E Bernstein, Krzysztof Choromanski, Avinava Dubey, Nauman Javed, Adam Roberts, Arijit Sehanobish, Thomas Weingarten

Ngôn ngữ: eng

Ký hiệu phân loại: 920.71 Men

Thông tin xuất bản: United States : Cell genomics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 61543

Sequence-based deep learning models have emerged as powerful tools for deciphering the cis-regulatory grammar of the human genome but cannot generalize to unobserved cellular contexts. Here, we present EpiBERT, a multi-modal transformer that learns generalizable representations of genomic sequence and cell type-specific chromatin accessibility through a masked accessibility-based pre-training objective. Following pre-training, EpiBERT can be fine-tuned for gene expression prediction, achieving accuracy comparable to the sequence-only Enformer model, while also being able to generalize to unobserved cell states. The learned representations are interpretable and useful for predicting chromatin accessibility quantitative trait loci (caQTLs), regulatory motifs, and enhancer-gene links. Our work represents a step toward improving the generalization of sequence-based deep neural networks in regulatory genomics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH