MLTB: Enhancing Transferability and Extensibility of Density Functional Tight-Binding Theory with Many-body Interaction Corrections.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Enrique R Batista, Daniel J Burrill, Marc J Cawkwell, Chang Liu, Nicholas Lubbers, Danny Perez, Michael G Taylor, Ping Yang

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Journal of chemical theory and computation , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 62044

We present a hybrid semiempirical density functional tight-binding (DFTB) model with a machine learning neural network potential as a correction to the repulsive term. This hybrid model, termed machine learning tight-binding (MLTB), employs the standard self-consistent charge (SCC) DFTB formalism as a baseline, enhanced by the HIP-NN potential as an effective many-body correction for short-range pairwise repulsive interactions. The MLTB model demonstrates significantly improved transferability and extensibility compared to the SCC-DFTB and HIP-NN models. This work provides a practical computational framework for developing reliable SCC-DFTB models with additional many-body corrections that more closely approach the DFT level of accuracy. We illustrate this method with the development of an accurate model for the thorium-oxygen system, applied to the study of its nanocluster structures (ThO
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH