Emerging contaminants (ECs) pose great challenges to water treatment technology due to their complexity and high harm. In this paper, the method of dielectric barrier discharge (DBD) plasma coupled with iron-based catalyst (FeNC) activating periodate (PI) was first designed for ECs removal. The ingenious introduction of FeNC not only promotes the Fenton-like reaction of DBD system but also reduces the PI activation energy barrier and accelerates the electron shuttle between PI and pollutants. Based on the parameters evaluation of machine learning (ML), the calcination temperature of 575 ℃ and 17 % N addition were determined for best catalytic performance. XRD, Raman spectroscopy, XPS and density functional theory (DFT) analysis show that optimized catalyst has better electron shuttle characteristics and PI activation ability. Compared to DBD (78 %) and DBD/PI (94 %), DBD/FeNC/PI could achieve 100 % degradation efficiency of sulfadiazine (SDZ) in 12 min with high reaction rate. In addition to the effects of ROSs (