Dạng tổng quát của định lý thác triển hartogs đối với các ánh xạ chỉnh hình tách biên

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Thị Kim Quy Ngô

Ngôn ngữ: vie

Ký hiệu phân loại: 515.94 Functions of several complex variables

Thông tin xuất bản: Khoa học và Công nghệ, 2013

Mô tả vật lý: 133-139

Bộ sưu tập: Metadata

ID: 631136

The main purpose of this article is to give a general version of the well-known Harrtogs extension theorem for separately holomorphic functions. Using recent development in Poletsky theory of discs, the author prove the following result: Let X, Y be to complex manifolds, let Z be a complexanalytic space which possesses the Hartogs extension property, let A (resp. B) be a non locally pluripolar subset of X (resp. Y). The study show that every separately holomorphic mapping f:W:=(AxY)U(XxB) - Z extends to a holomorphic mapping f: W={(z,w)EXxY:m(z,A,X)+m(w,B,Y)I} such that f
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH