Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Guojun Duan, Yousef Faraj, Zhenqiang Guo, Pengfei Li, Xiaohan Li, Haowan Shi, Yong Sun, Jikang Xu, Xiaobing Yan, Biao Yang, Weifeng Zhang, Yinxing Zhang, Zhen Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 006.338 *Programs for knowledge-based systems

Thông tin xuất bản: Germany : Advanced science (Weinheim, Baden-Wurttemberg, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 632262

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption. Here, robust and epitaxial Gd: HfO2-based film memristors are reported and construct a weighted echo state graph neural network (WESGNN). Benefiting from the optimized epitaxial films, the high switching speed (20 ns), low energy consumption (2.07 fJ), multi-value storage (4 bits), and high endurance (10
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH