Tumor metastasis involves a series of complex and coordinated processes, which is the main cause of patient death and still a significant challenge in cancer treatment. Pre-metastatic niches (PMN), a specialized microenvironment that develops in distant organs prior to the arrival of metastatic cancer cells, plays a crucial role in driving tumor metastasis. The development of PMN depends on a complex series of cellular and molecular components including tumor-derived factors, bone marrow-derived cells, resident immune cells, and extracellular matrix. Fibrinogen, a key factor in the typical blood clotting process, is related to tumor metastasis and prognosis, according to a growing body of evidence in recent years. Fibrinogen has emerged as an important factor in mediating the formation of tumor microenvironment. Nevertheless, a clear and detailed mechanism by which fibrinogen promotes tumor metastasis remains unknown. In this review, we first explore the roles of fibrinogen in the development of PMN from four perspectives: immunosuppression, inflammation, angiogenesis, and extracellular matrix remodeling. We highlight the significance of fibrinogen in shaping PMN and discuss its potential therapeutic values, opening new avenues for targeting fibrinogen to prevent or treat metastasis.