OBJECTIVES: To investigate the protective effects and underlying mechanisms of METHODS: Eighty C57BL/6 male mice were randomly divided into five groups: control group, model group, levodopa group (positive control group), low-dose GP group, and high-dose GP group, with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata of the mice. Two weeks after 6-hydroxydopamine, positive control group received intraperitoneal injection of levodopa 10 mg·kg RESULTS: Behavioral experiments showed that GP significantly improved the spontaneous activity and motor coordination of PD mice ( CONCLUSIONS: The results indicate that GP might increase dopamine and serotonin levels in the midbrain and promote the survival of dopaminergic neurons in substantia nigra pars reticulata by regulating the expression of phosphorylation of MAPK family proteins and the expression of mitochondrial apoptosis-related proteins, thereby ameliorating motor deficits in PD mice.