Integrating machine learning models for optimizing ecosystem health assessments through prediction of nitrate-N concentrations in the lower stretch of Ganga River, India.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shubhadeep Das Gupta, Akankshya Das, Basanta Kumar Das, Pranab Gogoi, Canciyal Johnson, Biswajit Mandal, Liton Paul, Sanatan Paul, Archisman Ray, Shreya Roy, Ajoy Saha

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: Germany : Environmental science and pollution research international , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 642218

Nitrate, a highly reactive form of inorganic nitrogen, is commonly found in aquatic environments. Understanding the dynamics of nitrate-N concentration in rivers and its interactions with other water-quality parameters is crucial for effective freshwater ecosystem management. This study uses advanced machine learning models to analyse water quality parameters and predict nitrate-N concentrations in the lower stretch of the Ganga River from the observations of six annual periods (2017 to 2022). The parameters include water temperature, pH, specific conductivity (Sp_Con), dissolved oxygen (DO), nitrate-N, total phosphate (TP), turbidity, biochemical oxygen demand (BOD), silicate, total dissolved solids (TDS), and rainfall. The present study evaluated the predictive performance of five models-Multiple Polynomial Regression (MPR), Generalized Additive Models (GAMs), Decision Tree Regression, Random Forest (RF), and XGBoost (Extreme Gradient Boosting)-using RMSE, MAE, MAPE, NSE and R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH