Increasing demand for palm oil has drastic effects on the ecosystem as its production is unsustainable. C. oleaginosus is a yeast with great potential for microbial oil production and is a sustainable alternative to palm oil. Herein we deployed the Design-Build-Test-Learn approach to establish C. oleaginosus as an efficient fatty acid production platform. In the design step, we combined transcriptome data analysis and metabolic modeling and selected gene overexpression targets (ATP-citrate lyase, acetyl-CoA carboxylase, threonine synthase, and hydroxymethylglutaryl-CoA synthase) and media supplements (biotin, thiamine, threonine, serine, and aspartate). Characterization of transformants at various carbon-to-nitrogen (C/N) ratios, and medium supplements provided up to 56% (w/w) lipid content and a 1.4-fold increase in lipid yield on glycerol (g/g). Additionally, quadratic regressions suggested C/N ratio of 240 as the optimum value. These results and introduced pipeline for strain and medium optimization establish C. oleaginous as a sustainable alternative to palm as an oil source.