Overreaching (OR) can be defined as a decline in physical performance resulting from excessive exercise training, necessitating days to weeks recovery. Impairments in the contractile function of skeletal muscle are believed to be a primary factor contributing to OR. However, the cellular mechanism triggering OR remains unclear. The purpose of this study was to elucidate the mechanisms underlying OR. Rats' plantar flexor muscles were subjected to repeated electrical stimulations mimicking excessive high-intensity interval training (HIIT) daily for 13 consecutive days, and isometric torques were monitored. The torque was measured one day after HIIT, and subsequently, the physiological function of type II fibers was analyzed by using mechanically skinned-fiber technique. Eleven of 17 rats exhibited torque decline, whereas others did not. Thus, the rats were divided into OR and nonoverreaching (NOR) groups. Skinned fibers from the gastrocnemius (GAS) muscles of both groups showed decreased depolarization-induced force and increased myofibrillar Ca