Toward the Prediction of Binding Events in Very Flexible, Allosteric, Multidomain Proteins.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohd Athar, Andrea Basciu, Alexandre M J J Bonvin, Andrea Bosin, Han Kurt, Giuliano Malloci, Fabrizio C Muredda, Christine Neville, Paolo Ruggerone, Attilio V Vargiu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of chemical information and modeling , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 642411

Knowledge of the structures formed by proteins and small molecules is key to understand the molecular principles of chemotherapy and for designing new and more effective drugs. During the early stage of a drug discovery program, it is customary to predict ligand-protein complexes in silico, particularly when screening large compound databases. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology to generate bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites by exploiting only information on the unbound structure and the putative binding sites. The protocol is validated on the paradigm enzyme adenylate kinase, for which we generated a significant fraction of bound-like structures. A fraction of these conformations, employed in ensemble-docking calculations, allowed to find native-like poses of substrates and inhibitors (binding to the active form of the enzyme), as well as catalytically incompetent analogs (binding the inactive form). Our protocol provides a general framework for the generation of bound-like conformations of challenging drug targets that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening, in the prediction of the impact of amino acid mutations on structure and dynamics, and in protein engineering.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH