Energy metabolism coordination for the byproduct-free biosynthesis of 1,3-propanediol in Escherichia coli.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Nandakumar Arumugam, Seunghyun Cho, Vivek Kumar Gaur, Tayyab Islam, Junhak Lee, Sunghoon Park

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Bioresource technology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 642611

The efficient, byproduct-free production of 1,3-propanediol (1,3-PDO), a valuable chemical widely used in various industries, presents a significant challenge in bio-based manufacturing, due to its reduced nature. In this study, Escherichia coli K12 was engineered to achieve high-yield 1,3-PDO production by optimizing glucose metabolism and utilizing glycerol as a feedstock. Glycolytic flux was rerouted to the NADPH-generating pentose phosphate (PP) pathway, linking NADPH regeneration to 1,3-PDO biosynthesis. These modifications enhanced carbon utilization and eliminated byproduct formation. The engineered strain, PK19-D1Q1, achieved a record 1,3-PDO titer of 1.06 mol/L, with glycerol and glucose yields of 0.99 mol/mol and 2.01 mol/mol, respectively, in fed-batch fermentation. Furthermore, the strain's ability to maintain high productivity with crude glycerol underscores its potential for industrial-scale applications using low-cost, sustainable substrates. This study sets a benchmark for scalable, sustainable 1,3-PDO production, showcasing the integration of cofactor balancing and pathway engineering for bio-based chemical manufacturing.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH