Structural Reconstruction via Carbon Nanotube Spatially Confined Metal Catalysis: A Morphology-Controlled Approach to Convert Polycyclic Aromatic Hydrocarbon into Carbon Nanofibers for Highly Active Anodes in Li-Ion Batteries.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ming Chen, Ai-Xiang Ding, Chun-Sheng Li, Feng-Ming Liu, Ke Liu, Xing Qian, Rong Wan, Zhong-Yong Yuan, Ming-Yang Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Inorganic chemistry , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 642744

By a carbon nanotube (CNT) spatially confined metal-catalyzed structural reconstruction, carbon nanofibers (CNFs) with a hollow, hollow-solid, solid graphite core, and CNT shell are prepared using nitrogen heterocycle (NHC) and polycyclic aromatic hydrocarbon (PAH) as carbon sources. The formation mechanism of CNFs with oriented graphene layers and enlarged intergraphene spacing is studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction analysis. It revealed that this one-dimensional nanoconfined metal-catalyzed carbon rearrangement is totally different from the reported spatially localized metal-catalyzed graphitization of electrospun polymer and nanocasted carbohydrate nanofibers, as the graphene orientation, cavity volume, and interlayer distance of CNFs can be controlled by the carbon concentration-related competitive metal-catalyzed tip growth of latitudinal and longitudinal graphene layers from NHC and PAH. The unique CNF structure renders good electronic/ionic conductivity, abundant Li
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH