Mechanism of Regio- and Enantioselective Hydroxylation of Arachidonic Acid Catalyzed by Human CYP2E1: A Combined Molecular Dynamics and Quantum Mechanics/Molecular Mechanics Study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hajime Hirao, Honghui Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of chemical information and modeling , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 642748

Regio- and enantioselective hydroxylation of free fatty acids by human cytochrome P450 2E1 (CYP2E1) plays an important role in metabolic regulation and has significant pathological implications. Despite extensive research, the detailed hydroxylation mechanism of CYP2E1 remains incompletely understood. To clarify the origins of regioselectivity and enantioselectivity observed for CYP2E1-mediated fatty acid hydroxylation, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations were performed. MD simulations provided key insights into the proximity of arachidonic acid's carbon atoms to the reactive iron(IV)-oxo moiety in compound I (Cpd I), with the ω-1 position being closest, indicating higher reactivity at this site. QM/MM calculations identified hydrogen abstraction as the rate-determining step, with the ω-1
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH