Gastric wound healing constitutes a complex challenge, even in the context of superficial wounds, due to the harsh stomach environment, characterized by high pH variability and dynamic enzyme concentrations. Therefore, effective healing depends on robust mechanical support and adequate biochemical cues to drive cell growth and proliferation. Electrospun-based dressings may offer a solution to these problems by providing physical support that mimics native extracellular matrix. In this study, electrospun dressings composed of a blend of polycaprolactone (PCL) and gelatin (Gel) were proposed for the first time for gastric application by tuning the relative PCL:Gel ratios (75:25, 50:50 and 25:75) to optimize both their retention capacity and cellular interaction. PCL/Gel dressings, in a proportion of 75:25, showed to have efficient mucoadhesion (ultimate stress of 1.8 MPa) when tested in ex vivo porcine samples. They were also stable in simulated gastric fluid for 14 days, a period compatible with the treatment window. Moreover, the non-cytotoxic biological response (>
90 %) of the dressings was favorably validated in mouse fibroblast L929 cell line. Cell morphology, metabolic activity, cell viability and proliferative capacity were assessed using human specific gastric cell lines, including normal stomach fibroblasts (NST-20) and gastric adenocarcinoma (AGS). Overall, PCL/Gel dressings of 75:25 increased the proliferation rate of NST20 and AGS cells after 3 and 7 days in culture, respectively, with significant expression of proliferation marker Ki-67 protein.